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An analytic study of boiling heat transfer from a fin 
H.C. UNAL 

MT-TNO, P.O. Box 342,730O AH, Apeldoorn, The Netherlands 

Abstract-Analytic expressions for the one-dimensional temperature distribution in a pin fin or a straight fin 
of rectangular profile are derived if various types of boihng occur simultaneously at adjacent locations on 
such a fin’s surface. The heat transfer coefficients for the transition and nucleate boiling are taken as being 
the power functions of the wafl superheat and that for fifm boiling as being constant. The number of cases 
aualysed is 64. Some of the results obtained are compared with those of experiments carried out elsewhere. 
A quite reasonable degree of agreement is found between the theory and the experiment carried out in 

practice. 

INTRODUCTION 

VARIOUS types of boiling occur s~ultaneously at 

adjacent positions on the surface of a fin in many 
practical applications. These include low-finned 
boilers Cl], evaporators for the regasification of cryo- 
genic liquids [2], and cooling of large radio power 
tubes [?] and of semi-conductor valves [4]. 

Analytic studies dealing with boiling heat transfer 
from single fins are rarely to be found in the literature. 
To the author’s knowledge, only five papers have so 
far appeared on this subject [4-S]. This is probably 
due to two reasons. The first being that the differential 
equation for temperature distribution in a fin in a 
boiling liquid is highly non-linear in character and 
consequently it appears difficult to solve by using an 
analytic method, if it can be solved at all [7]. The 
second reason is that the numerical solution of the 
foregoing equation is straightforward and eliminates 
some assumptions necessary to obtain an analytic (i.e. 
closed-form) solution [l, 9). For the design engineer, 
however, the desirability of simple closed-form 
expressions may well outweigh considerations of rigor 
and exactness [lo]. 

Dul’kin et al. [S] analytically determined one- 
dimensional temperature distribution in a pin (i.e. 
cylindrical) fin and the heat duty (i.e. the heat flux) at 
its base when different types of boiling occurred 
simultaneously on its surface. The boiling heat transfer 
coefficients used by these investigators are given by 

!tj = a&?? 

where N, = 0 for film boiling; N, = -4 for R113, 
N, = -2.4 for water and N, = - 1 for water and 
R 113 for transition boiling; and N, = 2 for nucleate 
boiling. The index j in equation (1) refers to the type 
of boiling. N is a non-dimensional constant and a is 
a dimensional constant. The results of their analytic 
study were verified with those of their experimental 
study carried out using four copper pin fins of different 

lengths. The boiling media used were saturated water 
and Rl13 at atmospheric pressure. Petukhov et ~2. 
[4] carried out work similar to that described above 
using N, = 0, N, = -3 and N, = 2 for Ril3. 

The main findings reported by Dul’kin et al. [S] 
and Petukhov et al. [4] confirm those of Haley and 
Westwater [l] which were disclosed earlier. The latter 
measured the performances (i.e. temperature gradients 
and wall superheats at the fin bases) of a copper spine 
and two copper pin fins while boiling took place on 
them. The cooling media used were saturated R113 
and isopropyl alcohol at atmospheric pressure. They 
also determined these performances with a numerical 
method and reported: 

-that the heat rejected by a fin in a boiling liquid 
may be of an order of magnitude greater than for 
the base metal without fins; and 

-that not only are three values of Bb (the wall 
superheat at the fin base) possible for most heat 
fluxes at the fin base but also the heat flux at the 
fin base is a triple-valued function at certain values 
of f&,, that is to say at least when the ratio of the 
length of the fin to its diameter is large. 

If all types of saturated pool boiling are taken into 
account, the power in equation (1) may vary between 
-6.6 and 5 [ll]. As is already well known, and 
excluding zero, a positive power in equation (1) applies 
to nucleate boiling and a negative power to either 
transition boiling or film boiling. If this power is 
equal to zero, then the heat transfer coefficient is 
constant. l%al f7] gave the values of the power in 
equation (1) for which an analytic (i.e. closed-form) 
solution can be derived practically for one-dimen- 
sional temperature distribution in a straight fin of 
rectangular profile or in a pin fin. These values are: 
-4, -3, -2.5, -2.4, -2.2, -2.1, -1.9, -1.8, -1.6, 
-1.5, - 1, 0, 1 and 2. With regard to the negative 
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NOMENCLATURE 

A cross-sectional area of a tin [m’] Y constant defined in the text 

; 

given constant [Wm-2K-(Nj’1)] Z fin effectiveness. 
constant defined in the text 

b half fin thickness [m] Greek symbols 

c, D integration constants GL modular angle [radians] 
E, F, G functions defined in the text r gamma function 

g constant defined in the text B wall superheat (i.e. difference 
~(#/~) Legendre’s normal elliptic integral between wail and saturation 

of the first kind temperature) at point x [K] 
h heat transfer coefficient Q,fT real numbers 

CWm 3 
-*K-l 

9 amplitude [radians]. 

z 
index (a natural number) 
thermal conductivity of fin material Subscripts 

CWm 1 -IK-1 1 refers to film boiling 
L fin length [mf 2 refers to transition boiling 
m given dimensionless constant 3 refers to nucleate boiling 
N given dimensionless constant b refers to fin base 
P circumference of a pin fin Cm] d refers to dryout location 

P-s functions defined in the text 
; 

refers to fin tip 
S first derivative of wall superheat refers to location where film 

[Km-‘] boiling terminates 

t-w constants defined in the text j index referring to the type of 
x space coordinate [m] boiling (j = 1, 2 and 3). 

numbers, he only considered the integers and the one- 
digit numbers. He Further derived analytic expressions 
for temperature distributions in the foregoing fms 
when the power in equation (1) equalled 1 and 2. 

The object of this study is to present analytic 
solutions for the one-dimensional differential equation 
for the temperature distribution in a pin fin or in a 
straight fin of rectangular profile if film, transition 
and nucleate boiling or transition and nucleate boiling 
or film and transition boiling occur simultaneously 
at adjacent positions on the surface of the fin. To 
this end, the film boiling heat transfer coefficient is 
assumed to be constant. Excluding zero, the power 
in equation (I) is taken to be equal to each of the 
foregoing negative numbers for transition boiling, and 
to each of the foregoing positive numbers for nucleate 
boiling. The case in which only transition boiling 
occurs on the surface of the fin is also dealt with and 
thus the number of analytic solutions given for the 
temperature distribution in the fin is 66. The case in 
which only film boiling occurs on the surface of the 
fin (i.e. N, = 0) is given in the relevant text books. 
The results of the analytic work presented will be 

made: one-dimensional, steady-state heat conduction 
through the fin; a constant thermal conductivity for 
tin material; no heat sources in the fin itself; negligible 
heat transfer from the fin tip; and a constant fin cross- 
sectionaf area. The liquid surrounding the fin is in 
a state of saturation corresponding to the system 
pressure. The origin of the space coordinate x is at 
the fin base and positive x is toward the fin tip. 

For the conditions now being considered and for 
a particular type of boiling j, the differential equation 
of the temperature distribution in the fin becomes 

WI 

where 

gfj _ $_& 
dx2 k 

t = P/A for the pin fin (3) 

t = l/b for the straight fin. (4) 

Following the procedure presented in ref. [7] and 
after having inserted kj given in equation (1) into 
equation (2), the latter is reduced to 

compared with those of the experimental study 
reported in ref. [l]. 

where 
BASIC DIFFERENTIAL EQUATION OF 

TEMPERATURE DlSTRiBUTiON IN A FIN 

A pin (i.e. cylind~c~~ fin or a straight fin of 
rectangular profile is now to be considered. For the 
analysis of such a fin, the following assumptions are 

s=dej 
j dx (6) 

(7) 
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FIG. 1. Characteristics of a fin in a boiling liquid. 

In order to determine the temperature distribution in 
the fin whilst the various types of boiling occur 
together at adjacent positions on its surface, a set of 
differential equations should be solved simultaneously 
as will be discussed in the following sections. 

SOLUTION OF THE DIFFERENTIAL EQUATIONS 

Film, transition and nucleate boiling 
If these three types of boiling occur together on the 

surface of the fin as illustrated in Fig. l(a), then three 
differential equations should be simultaneously solved 
in order to determine the temperature distribution in 
it. These equations are obtained with equation (5) if 
the index j in the latter is taken as being equal to 1, 
2 and 3 for film, transition and nucleate boiling, 
respectively. They are given by 

(8) 

(10) 

The boundary conditions for equation (8) are ex- 
pressed in equations (11) and (12), those for equation 
(9) in equations (13) and (14) and those for equation 
(10) in equations (15) and (16). The boiling curve used 
is shown in Fig. l(b). 

8, = Bc forx = 0 (11) 

de, de2 

dx dx 

e2 = er 

d0, de3 __= -- 
dx dx 

$3 = ed 

-3 
dx 

=o 
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forx = xr (12) 

for x = xr (13) 

forx = xd (14) 

for x = xd (15) 

for x = L. (16) 

Br, the wall superheat at the location where film 
boiling terminates, ed, the wall superheat at the dryout 
(i.e. burnout) location, and aj and Nj in equation (1) 

(i.e. al, a2, a3, N,, N, and N,) are known. xr, xd, 
x = x(0,) for 0 s x s x,; x = x(0,) for xr 5 x 5 x,; 
and x = x(0,) for xd 5 x 5 L, will be determined. 

After rearrangement, and taking into consideration 
equation (6) and the fact that the temperature in the 
fin decreases along its length, the first integration of 
equations (8)-(10) yield the temperature gradient in 
film, transition and nucleate boiling region, respec- 
tively. 

(17) dB,_ 
dx 

- -(B,Qf + CL)‘.5 

dB,_ 
dx - - 

2Bg21t”;’ 2’ + C,rl 
forN, # -2 

(18) 

de3_ 
dx - - 

(19) 

if each of the integration constants obtained is 
replaced by a new integration constant. 

The constant of integration C, in equation (17) is 
calculated using boundary condition given in equ- 
ation (12) and equations (17) and (18) as 

C, = c2 + 

2B20ftN’ + 2, 
N2 +2 - B,@ (20) 

since 8, = o2 = Br for x = xr. C, and C,, the inte- 
gration constants in equations (18) and (19) respec- 
tively, are obtained in a manner analogous to that 
described above, using the boundary conditions 
expressed in equations (14) and (16), respectively. 
These are given by 

2B3@N3+2’ 2B,@+2’ 
c2 = c, + N3 + 2 - 

N, + 2 
(21) 

C3 = _ 2;“52’, 
3 

The only unknown value in equations (20)-(22) is 0, 
(the wall superheat at the fin tip). The practical 
significance of these equations is obvious: If 0, is 
known, then the temperature gradient (or the heat 
flux) at the fin base can be determined using equation 
(17) for all values of Nj, excluding N, = - 2. The 
foregoing implies that the one-dimensional numerical 
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analysis of the fin being considered may be substan- 
tially shortened. 

In order to calculate the temperature distribution 
in the film boiling region, equation (17) is integrated 
to give 

~ln[D,(B,& + ,/=)I = --x. (23) 

JB, 

The constant of integration in equation (23), D,, 
is determined using boundary condition given in 
equation (11): 

D, = (C&/B1 + dm)-’ (24) 

xr, the location where film boiling terminates is 
obtained with equation (23) as 

xr = - 11nCD1(6r& + dm)l (25) 
JB, 

since 0i = Bt for x = xr. 
It follows from equations (23)-(25) that 0i for a 

given x (or x for a given 0,) for 0 5 x 5 xr and xf can 
be predicted if 8, is known. 

In order to find the temperature distribution in the 
transition boiling region, equation (18) should be 
integrated. The integration of this equation can be 
analytically made for a few values of N,, which were 
already mentioned. For these values of N,, this 
integration can be straightforwardly carried out using 
a mathematical handbook [13]. The result of the 
integration is given by 

E(f?,)= -x+D, (264 

forN, = -1, -1.5, -1.6, -1.8, -1.9, -2.4and -4, 
and by 

F(0,) + gln[D,G(0,)] = -x (26b) 

for N, = -2.1, -2.2, -2.5 and - 3. E in equation 
(26a), and F and G in equation (26b) are functions of 
e2. g in the latter equation is a constant. D, in both 
equations is the constant of integration. E, F, G and 
g are given in the Appendix for the values of N, given 
above. 

For the transition boiling region, the a-version of 
an equation applies to the values of N, mentioned 
first and the b-version to the values of N, mentioned 
later. 

Using the boundary condition expressed in equ- 
ation (13), the constant of integration in equation 
(26a) is determined as 

D, = xf + E(0,) 

and that in equation (26b) as 

(274 

D2 = G(B,) 
Lexp( -xf ; f(W). V-4 

x,,, the location of dryout, is determined with 
equation (26a) as 

xd = D, - E(O& (284 

and with equation (26b) as 

Xd = - F(BJ - gln[D,G(B,)] (28b) 

since e2 = ed for x = xd. 

It follows from equations (26)-(28) that e2 for a 
given x (or x for a given 0,) for xr $ x 5 xd and xd 
can be predicted if 0, is known. 

The temperature distribution in the nucleate boiling 
region is obtained by integrating equation (19). As 
noted earlier herein, the integration of this equation 
is impracticable with analytic methods except in the 
cases where N, = 1 and 2. Introducing a new variable 
p = &/ee, equation (19) is reduced to 

dp 
(p3+2) _ 1p.5 

= -ydx 

where 

(30) 

The integration of equation (29) can be made using 
a mathematical handbook [ 13,143. Neglecting the 
details, the integration of the equation is given below: 

mH(4/a) = - yx + D, (31) 

where 
m = 2-0.5 forN, = 2 (32a) 

CL = x/4 for N, = 2 (33a) 

9 = arccos (eJe,) for N, = 2 (34a) 
m =i 3-0.2s forN, = 1 (32b) 

u = x/l2 forN, = 1 (33b) 

> 

for N, = 1. (34b) 

H(##x) in equation (31) Legendre’s (incomplete) nor- 
mal elliptic integral of the first kind, is tabulated in 
ref. [14] as a function of 4 and c(. This integral is also 
given as an analytic function in refs. [7,13]. H(c$/a) 

is valid 0 5 4 i II. For the nucleate boiling region, 
the a-version of an equation refers to N, = 2 and the 
b-version to N, = 1. 

Using the boundary condition expressed in equ- 
ation (15), the constant of integration in equation (3 1) 

is determined as 

D3 = mH(&/a) + Y-% (35) 

where 

& = arccos(OJO,) forN, = 2 (36a) 

bd = arccos 
ti + 1 - ede, 

fi - i + ede, > 
for N, = 1. (36b) 

The temperature distribution in the nucleate boiling 
region is expressed in equation (31) and can be 
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determined if es is known. 

It thus follows that the temperature distributions 
in the film, transition and nucleate boiling regions 
can be calculated if Bc is known. In order to predict 
these temperature distributions, xr and xdr the follow- 
ing procedure is adopted: for x = L, equation (31) is 
reduced to 

yL = mH(&,a) + Yxd (37) 

since H(r$Jcr) = 0. A value for 0. is first assumed, 
thereafter xr is determined with equation (25) and xd 
with equation (28). ee is iterated until equation (37) is 
satisfied. Having determined 0,, all the constants of 
integrations are then known; thus the temperature 
distribution in the film, transition and nucleate boiling 
region can be determined with equations (23), (26) 
and (31), respectively. These equations are not explicit 
but implicit functions of the independent variable x. 
Therefore it is a straightforward matter to calculate 
x for a given 0, since fib 2 8, 2 or, fir 2 0, 2 0, and 
8,~ e3 2 8.. 

The temperature gradient at the fin base, one of 
the most significant of the criteria to characterize the 
performance of the fin, is predicted with equation (17), 
with the value 0i = f&. The heat flux at the fin 
base is obtained by multiplying the reverse of this 
temperature gradient with the thermal conductivity 
of fin material. 

Nucleate and transition boiling 
If these two types of boiling occur together at 

adjacent positions on the surface of the fin, equations 
(9) and (10) should be solved simultaneously. The 
boundary conditions for equation (10) [i.e. equations 
(15) and (16)] and the boundary condition expressed 
in equation (14) for equation (9) hold good. The other 
boundary condition for equation (9) is given by 

e2 = eb for x = 0. (38) 

The simultaneous solution of equations (9) and (10) 
is analogous to that of equations (8)-(10). Omitting 
the details, the results of the solution are presented 
below. 

The temperature distribution in the transition boil- 
ing region is again expressed in equation (26). C, and 
C, given by equations (21) and (22) hold good. D, 
given by equations (27a) and (27b) should be replaced 
by equations (39a) and (39b), respectively. 

D, = -W&J (39a) 

1 

Dz = G(eJ - expC - F(e,)/g]. (39b) 

Equations (28a) and (28b) also hold good. 
The temperature distribution in the nucleate boiling 

region is again given by equation (31), equations (32)- 
(37) being valid here. 

In order to predict the temperature distributions 
in the transition and nucleate boiling regions and 

the dryout location xd, the following procedure is 
adopted. A value for 0. is assumed. xd is determined 
with equation (28). Bc is iterated until equation (37) 
is satisfied. Having calculated 0,, the temperature 
distribution in the transition boiling region is then 
evaluated with equation (26) and that in the nucleate 
boiling region with equation (31). The temperature 
gradient at the fin base is given by equation (18) if 8, 
in it is replaced by 6s. 

Film and transition boiling 

If these two types of boiling occur together at 
adjacent locations on the surface of the fin, the 
temperature distribution in it can be determined by 
solving equations (8) and (9) simultaneously. The 
boundary conditions expressed in equations (11) and 
(12) for equation (8) and the boundary condition 
expressed in equation (13) for equation (9) hold good. 
The other boundary condition for the latter equation 
is given by 

de 
2=0 
dx 

forx = L. 

Neglecting the details in the simultaneous solution 
of equations (8) and (9), the results of the solution are 
outlined below. 

C, is determined with equation (18) using the 
boundary condition expressed in equation (40): 

C,, given by equation (20), holds good if C, in it 
is calculated with equation (41). The temperature 
distribution in the film boiling region is evaluated 
with equation (23), and equations (24) and (25) are 
valid in this case. The temperature distribution in the 
transition boiling region is again predicted with 
equation (26), equation (27) holding good here. 

In order to determine the temperature distribution 
in the fin and xr, the following method is used. Noting 
that x equals the fin length L for e2 = 0,, a value for 
0, is assumed. xr is predicted with equation (25) and 
x with equation (26). Bc is iterated until the calculated 
x is equal to L. Having found the value of B,, the 
temperature distribution in the film boiling is then 
determined with equation (23) and that in the tran- 
sition boiling region with equation (26). The tempera- 
ture gradient at the fin base is evaluated with equation 
(17), taking 0i = 0s in it. 

Transition boiling 
If only this type of boiling occurs on the surface of 

the fin, the temperature distribution in it is obtained 
by integrating equation (9). The boundary conditions 
are given in equations (38) and (40). The first inte- 
gration of equation (9) results in equation (18). C, in 
the latter equation is determined using the boundary 
condition expressed in equation (40). This value of C, 
is given by equation (41). The integration of equation 
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Table 1. Boiling data used 

Isopropyl 
aj. Nj, 0, and 8, alcohol R113 

n,, W mm2 K-’ 254 194 

Type of 
boiling 

film 
a,, W ,-z K-‘%+‘I 4.7 x 107 3 x 109 transition 
a3, W mm2 K-3 28 16 nucleate 
N, 0 0 film 
N, -2.5 -4 transition 
N, 2 2 nucleate 
or, K 81 71 
0,. K 22.7 22 

(18) yields the temperature distribution in the fin 
which is again given by equation (26). Using the 
remaining boundary condition, the constant of inte- 
gration in equation (26) is evaluated as expressed in 
equation (39). In order to utilize equation (26), 8, in 
it should be determined. Noting that x equals the fin 
length L for Q2 = O,, a value for 8, is assumed, and 
x is predicted with equation (26). 0, is iterated until 
the calculated value of x is equal to L. The temperature 
gradient at the fin base is determined with equation 
(18) taking the value 0, = 0,,. 

VERIFICATION WITH AVAILABLE DATA 

For this purpose, the previously quoted data prod- 
uced by Haley and Westwater [l] with 19.6- and 
30.7-mm-long, horizontal copper pin fins of 6.35 mm 
o.d. were used. These investigators measured the 
temperature gradients and wall superheats at the 
bases of these fins whilst various types of saturated 
pool boiling occurred at adjacent locations on their 
surfaces at atmospheric pressure. Tests were made 
with the 30.7-mm-long fin in R113 and in isopropyl 
alcohol. Additional tests were made with the 19.6- 
mm-long fin in R113. 

In order to calculate the temperature distribution 
in a fin in a boiling liquid, aj and Nj in equation (1) 
and 0r and Od should be known. Although the surface 
of such a fin is non-isothermal, Haley and Westwater 
[l], and Petukhov et al. [4] evaluated aj, Nj, 0, and 
ed from the data obtained on isothermal surfaces. The 
first quoted of these investigator teams concluded 
that this is a good procedure, while Dul’kin et al. [S] 
reported that N, for transition boiling on a non- 
isothermal surface is much higher than that on an 
isothermal surface (i.e. - 1 to -4 for R113 and - 1 
to -2.4 for water). 

In the present study, aj, Nj, 8, and 0, were derived 
from the data measured on isothermal surfaces. The 
data quoted in ref. [lS] from 11 different experimental 
studies were considered for isopropyl alcohol and the 
data of [l] for R113. The values of aj and Nj were 
obtained with a curve fitting technique. These values 
and those of 0, and 0, are given in Table 1. The 
thermal conductivity of copper was taken as being 
equal to 382 Wm-‘K-l. 

The calculated and measured temperature gradients 

at the bases of the 19.6- and 30.7-mm-long fins in 
boiling R113 are shown plotted against 0, in Fig. 2. 
The calculations were carried out with a programm- 
able desk calculator with 224 program steps. Consider 
now the 30.7-mm-long fin and assume that Q,, is slowly 
increased. If 0, < 0,, 5 B,, transition and nucleate 
boiling occur simultaneously on the fin, i.e. the BC 
part of the curve shown in the figure. The AB part of 
the curve corresponds to the case in which only 
nucleate boiling occurs on the fin. If 

Br < 0,(K) 5 101.3, film, transition and nucleate boil- 
ing take place simultaneously on the fin, i.e. the CD 
part of the curve. If &, is increased beyond 101.3K, 
film boiling occurs on the fin alone, i.e. the FG part 
of the curve. Film boiling also occurs on the fin only 
if 82 5 0,(K) 5 101.3, i.e. the EF part of the curve. 
The dashed-line part of the curve (i.e. the DE part) 
corresponds to the cases in which film and transition 
boiling occur simultaneously on the fin and that 
transition boiling exists on the fin only. Haley and 
Westwater [l] reported that it was not possible to 
operate along this dashed-line part experimentally. 
The calculated temperature gradients given in Fig. 2 
fit the data slightly better than the temperature 
gradients calculated with a numerical method in ref. 

Cll. 
In Fig. 3, the calculated and measured temperature 

gradients at the base of the 30.7-mm-long fin in 
boiling isopropyl alcohol are shown plotted against 
0,. The curve given in the figure is analogous to that 
shown in Fig. 2 for the 30.7-mm-long fin, with the 
exception that for no Qbr transition boiling occurs on 
the fin only. In Fig. 3, the temperature gradient curve 
obtained with a numerical method for the same fin 
[l] is also given. The two curves in this figure 
are practically identical. HI-portions of the curves 
coincide. 

It follows from Figs. 2 and 3, therefore, that the 
analytic method presented herein appears to be quite 
good for the cases in which transition and nucleate 
boiling or film, transition and nucleate boiling occur 
simultaneously on a fin and that only nucleate boiling 
occurs on the fin. For the case in which film boiling 
occurs only on the fin, the method seems to be quite 
a reasonable one to use. 

The fin effectiveness is a proper criterion to use in 
the evaluation of the heat-transfer performance of a 
surface with and without a fin. This is defined by 

z = - k(dQjldx)x = 0 

h,NJ. 4 

in which the numerator gives the heat flux at the fin 
base and the denominator gives the heat flux at the 
surface in the absence of the fin. The fin effectiveness 
for the 30.7-mm-long fin was calculated when the 
three types of boiling occurred on its surface. This 
value varies between 56.4 and 112.2 in the case of 
boiling isopropyl alcohol and between 64.2 and 95.8 
in the case of boiling R113. The foregoing implies 
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FIG. 2. Calculated and measured temperature gradients in two fins in boiling RI 13. 

that a fin in a boiling liquid is a very effective heat 
transfer enhancement device for the applications in 
which film boiling occurs on the bare surface. 

SUMMARY AND CONCLUDING REMARKS 

Analytic expressions for one-dimensional tempera- 
ture distribution in a pin fin or in a straight fin of 
rectangular profile are derived if film, transition and 
nucleate boiling or film and transition boiling or 
transition and nucleate boiling, occur simultaneously 
at adjacent locations on the surface of the fin. The 
condition in which transition boiling occurs only on 
the surface of the fin is also dealt with. The heat 
transfer coefficients in transition and nucleate boiling 
regions are taken as being the power functions of the 
wall superheat and that in the film boiling region as 
being constant. The number of cases amounts to 66. 
The results of some of these cases are compared with 
those of an experimental study carried out elsewhere. 
A quite reasonable degree of agreement was found 
between the theory and the experimental results found 
in practice. 

Throughout this study, the fin tip was assumed to 
be insulated and that the thermal conductivity of the 
fin material was constant. These are not restrictive 
assumptions however. It is a straightforward matter 
to modify the expressions presented herein if the 
physically true boundary condition for the fin tip is 
considered and if the thermal conductivity of the fin 
material is constant but different for each of the 
adjacent boiling regions on the fin. 

A fin in a boiling liquid appears to be a very 
effective heat transfer enhancement device for the 
applications in which film boiling occurs. 

Acknowledgment~Thanks are due to Professor J. Claus for 
his permission to publish this work and to Messrs H. van 
der Ree and D. J. van der Heeden for discussions. 
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APPENDIX 

Integration of equation (18) 
In order to integrate this equation, a new variable r is 

introduced and it is then reduced to 

r”dr 

w(ur + C,)‘.” 
= -dx (Al) 

where 

w=N,+2 (A2) 

r = 0; (A3) 

u = -(NZ + l)/(N, + 2) (A4) 

t’ = 2B,/(N, + 2). (A5) 

The integration of equation (Al) can be carried out using a 
mathematical handbook [13] and is given either by equation 
(26a) or by equation (26b). E, F, G and g in these equations 
are presented below. 

Let 4 and s be defined as follows: 
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q = (13 (&“z + 2’ + CJO.5 W) 

s = q~~.51N*+21 (A7) 

For N, = -1, - 1.5, -1.8 and -1.9, E(6,) in equation 
(26a) is given by 

where 

E(0,) = -& 
2; 

6412) 

For N, = -2.1, -2.2, -2.5 and - 3, F(B,), G(0,) and g in 
equation (26b) are given by 

F(0,) = $(7%“2,,~u2.‘“; ‘-;;z ,) 
9 > 

w+‘+” (Al3) 

(Jo 

0 
2 

) = 4 - CT5 (Al4) 
u U! q + cy 

=- 
i i!(u - i)!’ 

(A9) 

(A13 
For N, = - 1.6, N, = - 2.4 and N, = - 4, E(0,) is given by 
the following equations, respectively The special mathematical symbol used in F(f),) and g is 

defined as follows: Let 9 and D be real numbers and i a 
natural number. Then 

(9,0,i) = 9(9 + u)(s + 2c)...(9 + (i - l)cr). (Al6) 

(Al(‘) For i = 0, (9,o, 0) = 1. The following relation also holds: 

(All) (9,--o,i)=o’[l$+ I)][lfi-i+ I)]. (Al7) 

UNE ETUDE ANALYTIQUE DU TRANSFERT DE CHALEUR PAR EBULLITION 
A PARTIR DUNE AILETTE 

R&urn&Des formules analytiques pour la distribution unidirectionnelle de temperature dans une aiguille 
ou une ailette droite a profil rectangulaire sont obtenues quand differents types d’ebullition apparaissent 
simultantment sur la surface. Les coefficients de transfert de chaleur pour la transition et l’ebullition nucleee 
sont sous forme de fonctions puissances de la surchauffe de la paroi et celui pour l’ebullition en film est 
constant. On analyse 66cas. Quelques resultats obtenus sont compares avec ceux d’experiences connues. 

On trouve un degri raisonnable de compatibilite entre la theorie et les experiences. 

ANALYTISCHE UNTERSUCHUNG ZUM WARMEUBERGANG BEIM SIEDEN AN 
RIPPEN 

Zusammenfassung-Analytische Beziehungen fur die eindimensionale Temperaturverteilung in einer 
Stabrippe oder einer geraden Rechteckrippe wurden fiir den Fall hergeleitet, dal3 verschiedene Ver- 
dampfungsarten gleichzeitig an unterschiedlichen Stellen der RippenoberflPche auftreten. Die Wirme- 

iihergangskoeffizienten fiir das Sieden im Ubergangsbereich und fiir das Blasensieden wurden als 
Potenzfunktionen der Wandiiberhitzung angenommen, der Warmeiibergangskoeffizient fiir das Filmsieden 
als konstant angesetzt. 66 Falle wurden untersucht. Einige der Ergebnisse wurden mit experimentellen 
Werten anderer Autoren verglichen. Es ergab sich eine recht gute ubereinstimmung zwischen Theorie und 

Experiment. 

AHAJIWTHYECKOE HCCJIEAOBAHME TEI-IJIOOTJ(A~M PEBPA I-IPH KMIIEHMH 

hIIOTa~n-~OJIyieHbI ariannrri~ectoie abrpaaeeen, omicbtaaiotmie omiobteptioe pacnpenenemie reM- 
IlepaTyp B UrOJlbWTOM NJIU IUIOCKOM pe6pe llpliMO~OJTbHO~O npO@Ul~? B CJlyWe, KOrAa OAHOB,peMeHHO 

UMCIOT MeCTO pZl3JWIHb1‘2 PGiCHMbI KUtIeHHR Ha CMeXCHbIX Y’iaCTKaX IlOBepXHOCTei TaKHX pe6ep. HlXA- 
nonaraerca, YTo K03+@imieHTbr TennonepeHoca ana nepexonHor0 H nysbrpbroeoro ~~~HMOB tofnemia 
IBJlREOTCP CTeneHHbIMfi +,yHKUHKMH n‘?per~Ba CTeHKH, HO OCTiUOTCI nOCTOIIHHbIMH I,pF, IL”eHO’IHOM 

toinemin. llpoeeneti aHann 66 cnyqaes. Aafro cpaeriemie HeKoTopbrx u3 nonyqeHHbIx pe3ynbTaToB c 

3KCnepHMeHTaJIbHbIMW LZaHHbIMH npyr&iX aBTOpOB. nOKa3aH0, ‘IT0 Ha6nIOnaeTC% ynOB,IeTBOpHTeJIbHOe 


